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Abstract 
Projective methods for volume rendering currently represent 

the best approach for interactive visualization of unstructured 
datasets. We present a technique for tetrahedral projection using 
the programmable vertex shaders on current generation 
commodity graphics cards.  The technique is based on Shirley and 
Tuchman’s Projected Tetrahedra (PT) algorithm and allows 
tetrahedral elements to be volume scan converted within the 
graphics processing unit. Our technique requires no pre-
processing of the data and no additional data structures. Our initial 
implementation allows interactive viewing of large unstructured 
datasets on a desktop personal computer. 
CR Categories and Subject Descriptors: I.3.8 [Computer 
Graphics]: Applications; I.3.5 [Computer Graphics]: 
Computational Geometry and Object Modeling; I.3.3 [Computer 
Graphics: Picture/Image Generation – display algorithms 
Additional Keywords: direct volume rendering, PC graphics 
hardware, volume scan conversion, projection volume rendering 

1 INTRODUCTION 
In recent years, the capabilities and performance of personal 

computer (PC) graphics cards have grown dramatically.  This 
growth, driven by the computer gaming and entertainment 
industry, has opened up new opportunities to the scientific 
visualization community. Although not specifically designed for 
scientific visualization, the flexibility of the current generation 
cards allows them to be utilized in unique and creative ways.  

Specifically, our work focuses on programmable vertex 
shaders and their ability to act as Single Instruction Multiple Data 
(SIMD) machines on incoming vertices.  In particular, we are 
working with nVidia’s GeForce family of graphics processors.  
We use this programability to create a new hardware-supported, 
three-dimensional geometric primitive, the tetrahedron.  Existing 
primitives are all two-dimensional objects drawn in three-space, 
such as lines, triangles, quads, and polygons.  We provide a three-
dimensional object that is rendered volumetrically on a 
commodity graphics card.   

Projective methods for volume rendering of unstructured 
grids [7][9] work by projecting, in visibility order, the polyhedral 
cells of a mesh onto the image plane, and incrementally 
compositing the cell’s color and opacity into the final image. 
There are two main orthogonal components in such techniques: 
determining a visibility order to be used in projecting the cells 
[7][13][1][10], and actually computing the contribution of each 
cell to the image [9][7][6].  

In this paper, we present a technique for efficiently 
computing a cell’s contribution to the image.  It is orthogonal to 
the algorithm used for depth sorting of the cells.  The application 
can determine the most suitable sorting algorithm, and once the 
cells are sorted, they can be sent to the graphics processing unit 
(GPU).  This architecture allows the PC’s central processing unit 
(CPU) to perform the depth sorting, and the GPU to perform the 

PT algorithm on the tetrahedral primitive.  In general, splitting up 
the work in this fashion allows a more balanced approach to 
volume rendering.  In specific instances the CPU and GPU can be 
pipelined when computing multiple frames.  Our segmented 
approach also facilitates replacing the visibility sorting algorithm 
with newer algorithms as they become available.  

2 RELATED WORK 
For unstructured grids, the use of projection techniques to 

accelerate volume rendering has been an active area of research 
for many years. Projection techniques decompose three-
dimensional cells into two-dimensional primitives that can be 
processed by graphics hardware.  Earlier algorithms were 
designed to take advantage of SGI hardware features.  Recently, 
algorithms have been targeted to run on PC graphics cards.  The 
goal of this research is to achieve realistic volume rendering of 
unstructured data at interactive rates. 

In order to achieve this goal, it is necessary to develop 
solutions to the two components of projective algorithms, 
visibility ordering and cell contribution.  Starting with Williams’s 
work [13], there has been substantial progress in the development 
of accurate visibility ordering algorithms [10][1][2].  In fact, the 
SXMPVO algorithm of Cook et al., is able to sort well over one 
million cells per second on current hardware.  
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Figure 1: Classification of tetrahedral projections. 

The Projected Tetrahedra (PT) algorithm by Shirley and 
Tuchman [9] demonstrates the potential of using graphics cards to 
accelerate volume rendering of unstructured data. The PT 
algorithm splits each of the cells in the grid into tetrahedra.  The 
projected profile of each tetrahedron, with respect to the image 
plane, is used to classify it and decompose it into a set of 
triangles.  The four classes of projections are shown in Figure 1.  
The color and opacity values for each triangle vertex are 
approximated using ray integration through the thickest point of 
the tetrahedron.  The resulting semi-transparent triangles are 
sorted in depth order, then rendered and composited using 
graphics hardware.  Stein et al. [11] modify the PT algorithm to 
sort the cells before they are split into tetrahedra.  Additionally, 

--
*

------------------------------------------------------------------------- 
Sandia National Laboratories, Albuquerque NM 87185-0822 

E-mail {bnwylie | pjcross | lafisk | kmorel}@sandia.gov 



they utilize 2D texture mapping hardware to accelerate opacity 
interpolation and provide the correct per pixel opacity values to 
avoid artifacts. 

Röttger et al. [8] extend the PT algorithm by correcting the 
artifacts introduced by the linear interpolation of color and opacity 
between vertices.  They create a three-dimensional texture map to 
provide hardware support in interpolating along the ray between 
the front and back faces of a tetrahedral cell.   In this texture map, 
two of the three coordinates correspond to values at the cell entry 
and exit points, with the third coordinate mapping to the distance 
through the cell.  This texture map is then approximated using 
two-dimensional texture mapping.   

Engel et al. [1] expand on the work of Röttger et al. using the 
programmable features of the GeForce3 graphics card.  To avoid 
generating additional slices for image quality, they integrate non-
linear transfer functions in a pre-processing step.  Pre-integrated 
classification is combined with volume rendering techniques for 
structured or unstructured cells.  However, for this paper, the 
rendering techniques implemented are for regular grids.  

King et al. [5] propose an architecture for tetrahedral scan 
conversion that would do the visibility sorting in the hardware in 
addition to the classification, triangulation, and thick vertex 
calculation.  They describe a new hardware buffer, a recirculating 
fragment buffer or R-buffer that would be used to implement 
order independent transparency (this is similar to Farias, et al.’s 
ZSWEEP[4]). To reduce the bandwidth required to send a 
tetrahedral mesh to the GPU, they propose an extension to the 
OpenGL API to implement two new primitives, a tetrahedral strip 
and a tetrahedral fan, and provide ‘stripification’ algorithms.  
However, although these ideas are evaluated through simulation, 
the hardware is not built and the OpenGL extensions do not exist.  
One of the advantages of both King et al [5] and Farias et al. [4] is 
that they handle meshes with visibility cycles, while order-
dependent techniques would generate incorrect images. 

3 APPROACH 
Programmable vertex shaders do not currently support 

dynamic vertex creation or topology modification within the 
vertex program.  The topology and number of vertices are fixed 
and strictly determined by the calling application.  Section 3.1 
discusses aspects of vertex programming and its effects on 
execution flow and branching.  All of these constraints make the 
implementation of the PT algorithm impossible if one simply 
sends the tetrahedral vertices down the graphics pipe.  Instead, we 
need a fixed topology that can be adapted, strictly through vertex 
manipulations, to represent the two-dimensional projection of a 
tetrahedron viewed from any angle.  We call this fixed topology 
the basis graph. The basis graph is the original tetrahedron with 
an additional phantom vertex. The graph is isomorphic with the 
two-dimensional projection of the tetrahedron onto the viewing 
plane, irrespective of viewing angle (see section 3.2). The basis 
graph is sent to the graphics hardware where the vertex program 
performs all the following steps required by the our algorithm: 

1.) Transform to screen space. 
2.) Determine projection class. 
3.) Calculate the coordinates of the phantom vertex. 
4.) Map the vertices to the basis graph. 
5.) Determine depth at thick vertex. 
6.) Compute color and opacity for thick vertex. 
7.) Multiplex the result to correct output vertex. 
The implementation of each of these steps, with respect to 

the basis graph, is covered in detail in the following sections. 

3.1 Coding Constraints 
Analogous to issues in programming for SIMD architectures, 

writing vertex programs presents a number of constraints over 
traditional programming.  These include the loss of branching 
statements for flow control, independent processing of all vertices 
passed to the GPU with no knowledge about neighboring vertices 
or connectivity between vertices, and the inability to change 
execution based on past information.  Implementing the PT 
algorithm under these conditions requires a model where all 
information about the tetrahedral vertices must be passed in 
through the input registers, and the same code is redundantly run 
on each vertex. 

These constraints favor universal ‘reuse’ over algorithmic 
efficiency.  Given the four classes of tetrahedral screen 
projections shown in Figure 1, clearly not all cases will require 
identical processing.  For instance, although class 1 projections do 
not need to compute an intersection of the tetrahedral line 
segments, the lack of flow control leads to performing the 
intersection calculation anyway.  Consequently, we use this result 
for “thickness” calculations, instead of the more familiar ray-
plane intersection test.  The emphasis on using the same code for 
all cases tends to obfuscate what would otherwise be a fairly 
simple algorithm.  

3.2 Basis Graph 
The inability to create or delete vertices within a vertex 

program and the fixed topological constraints of submitted 
vertices requires the creation of a basis graph. The basis graph 
must be able to ‘morph’ itself into any one of the possible 
triangle/topology outcomes from the viewpoint dependant 
projection of the tetrahedral cell.  

Our basis graph consists of five vertices (four defined by the 
tetrahedral cell, plus a phantom vertex) and a topological 
specification (see Figure 2).  The configuration shown allows us 
to create any triangulation used by the projections shown in 
Figure 1 simply by generating new coordinate locations for the 
five vertices basis graph. These coordinates may be computed 
dynamically based on line intersections (class 2) or we may just 
swap or copy input vertex locations to accommodate topology or 
winding constraints. 
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Figure 2: Our basis graph with five vertices and their 
topological specification.  Note: the graph illustrates topology 
and does not represent geometric locations of the vertices. 

In Figure 3, we present a pseudo code example of how the 
basis graph is used conceptually.   A tetrahedron is simply 
defined by coordinate vertices {V0, V1, V2, V3}.  For each 
tetrahedron we introduce an additional phantom vertex, VP, that is 
sent down the graphics pipe along with the four true vertices.  The 
topology of the basis graph shown in Figure 2 can be drawn with 
the GL_TRIANGLE_FAN primitive.  In practice, the input 
registers for each invocation of the vertex program are loaded 
with the properties (coordinates, colors, etc…) of all four 



tetrahedral vertices and the specific vertex given to the glVertex 
call is ignored because the vertex program uses at all four vertices 
in its calculations. 

 
depth sort all tetrahedra 
 
for each tetrahedron {V0, V1, V2, V3} 
{ 

Load {V0, V1, V2, V3} into registers 
Begin TRIANGLE_FAN 
  Invoke vertex program for V4’ 
  Invoke vertex program for V0’ 
  Invoke vertex program for V1’ 
  Invoke vertex program for V2’ 
  Invoke vertex program for V3’ 
  Invoke vertex program for V0’ 
End 

} 

Figure 3: Pseudo code for converting tetrahedral cells with 
four vertices into the five-vertex basis graph. 

Using this approach, the modifications to existing application 
software would be minimal.  In fact, by just applying a thin 
veneer we could support a GL_TETRA_EXT primitive and 
details like the phantom vertex could be abstracted away. 

3.3 Classification Determination 
Shirley and Tuchman [9] classify the projection of a 

tetrahedron into four different cases based on the number of 
triangles required for drawing the projection silhouette from 
various viewing angles.  In each case, one of the vertices of the 
triangles represents the thickest point in the projection of the 
tetrahedron.  The other vertices of the triangles represent the 
points where the thickness at the edge of the tetrahedron 
transitions to zero.  The thickness is used in calculating the 
brightness and opacity of the cell projection.  In Class 2, none of 
the four vertices defining the tetrahedron falls at the thickest 
point, which is at the intersection of the view vector with the front 
and back edges, so this case requires the addition of a vertex.  
Class 1 and 2 are the distinct classes with classes 3 and 4 
representing degenerate cases (Figure 1).  

Given that we pass the vertex data into the GPU before we 
know anything about the tetrahedron’s projection onto the screen, 
the input order of the vertices to the vertex program is arbitrary.   
Therefore, we must deal with every permutation of vertex 
ordering in the vertex program.  We have developed an expanded 
class table, given in Figure 4, that provides all possible 
permutations of the relative vertex locations based on input 
ordering for class 1 and 2.  

The vertex program must differentiate between permutations 
to correctly construct the triangle decomposition with respect to 
both topology and winding order issues.  With permutations there 
are 14 cases/projections, not including degenerate cases.  Since 
vertices cannot be deleted in a vertex program, we simply create 
zero area triangles for degenerate cases.  The vertex program 
classifies the tetrahedron into one of the 14 projection cases by 
conducting a series of geometric tests.  The setup terms and the 
four Boolean tests needed for case determination are listed in 
Figure 5. Together with the truth table in Table 1, these identify 
the correct mapping between the two isomorphic graphs.  Let V = 
{V0, V1, V2, V3, VP} be the projected tetrahedron vertices (plus 
generated phantom vertex) and V’ = {V0’, V1’, V2’, V3’, V4’} be 
the vertices of the basis graph.  For each case i of the 14 cases, 

there exists a static onto function fi: V → V’ that maps the 
projected vertices to the basis graph. 

 

 
Figure 4: Classifications of projected tetrahedra with 
permutations (degenerate classes 3 and 4 are not included).  
The vectors and line segment intersections used in the vertex 
program are included for illustration. 

 

Figure 5: Definitions and tests used by the vertex program for 
classification of projected tetrahedra. 

 

vec1 = V1-V0; vec2 = V2-V0; vec3 = V3-V0; 
 
cross1.z = z component of (vec1 x vec2); 
cross2.z = z component of (vec1 x vec3); 
cross3.z = z component of (vec2 x vec3); 

test1 = (cross1.z * cross2.z < 0); 
test2 = (cross1.z * cross3.z > 0); 
test3 = (distance V0 to middle vertex – distance V0 to I) > 0; 
test4 = (cross1.z > 0); 



A description of vertex program operation is given below to 
illustrate the process. 
 

Before the vertex program is run, all tetrahedral vertex 
properties, {V0, V1, V2, V3}, are loaded into the input 
registers in arbitrary order.  
 
First, the vertex program converts vertices from object space 
to normalized screen space.  The vectors vec1, vec2, and 
vec3 are then computed in screen space. The z-components 
of the cross products are then computed. 
 
Now we begin an example determination process… 
 
If test1 is true, then the z terms of cross1 and cross2 have 
different signs.  By using the right hand rule this must mean 
that V2 and V3 are on different ‘sides’ of vec1 (i.e. cases 1, 2, 
3, 4, 9, or 10). Now, if test2 is true, then cross1.z and 
cross3.z have the same sign.  So, if V2 is to the right of V1, 
then V3 is also to the right of V2.  Use the same logic for the 
left side.  Test2 gives us cases (1, 2, 5, 6, 11, or 12).  If both 
test1 and test2 are true, that leaves only cases 1 and 2.  
These only differ in ‘winding’.  All winding ambiguities are 
settled using test4. 

 
Our example did not discuss the use of test3.  Test3 is used 

to distinguish between Class1* and Class2.  It simply computes 
the Euclidean distance from V0 to the middle vertex† and the 
distance from V0 to the intersection point, I.  If the distance to the 
intersection point is less than the distance to the middle vertex, 
than it must be a Class 2 projection.  In general, these tests could 
take many different forms. These particular tests were chosen 
because they require no additional data structures, no 
preprocessing, and they can be done in very few vertex program 
instructions.  The complete logic table for the projection case 
determination is given in Table 1. 

 
Case Test 1 Test 2 Test 3 Test 4 

1 1 1 X 1 
2 1 1 X 0 
3 1 0 0 0 
4 1 0 0 1 
5 0 1 0 0 
6 0 1 0 0 
7 0 0 0 1 
8 0 0 0 0 
9 1 0 1 0 

10 1 0 1 1 
11 0 1 1 1 
12 0 1 1 0 
13 0 0 1 1 
14 0 0 1 0 

Table 1: The truth table used by the vertex program for 
projection case determination. 

                                                                 
* Excluding cases 1 and 2, which have ‘Don’t Care’ logic for 

test3. 
† The middle vertex is defined as follows: if tests 1 & 2 pass, 

it’s V0; if test 1 passes and test 2 fails, its V1; if test 1 fails and test 
2 passes, its V2, and if tests 1 & 2 fail its V3. 

3.4 Isomorphic Mapping 
Now that the vertex program has determined the projection 

case, it must handle the topological and winding issues when 
mapping the tetrahedral projection onto the basis graph.  A 
helpful analogy is to think of the vertex program as multiplexing 
the input vertices. The program has access to all the vertex 
coordinates as input (plus the intersection point, which is 
computed internally).  From these it selects one to output.   

To demonstrate the isomorphic mapping concept, let us 
follow the triangle construction for one of our cases. Arbitrarily 
we have picked case 5. Recall that the first vertex called within a 
GL_TRIANGLE_FAN primitive is the ‘pivot’ vertex.  The pivot 
vertex is the ‘thick’ vertex around which the rest of the ‘thin’ 
vertices fan. So for case 5 we know that the proper triangulation 
is: V2 as the thick vertex, followed by V0, V1, V3 and back to V0 
to complete the fan‡. Figure 6 demonstrates the process our 
method uses to convert the tetrahedron into screen space triangles. 

 

 
Figure 6: An example showing the vertex to node mapping 
from a projection instance to the basis graph (shown for a 
case 5 projection). 

Note that it requires 6 vertex calls to construct a fan of 4 
triangles, as shown in Figure 3, and that Class 2 projections 
require 4 triangles. We must always make 6 calls because we do 
not know a-priori which projection that tetrahedron will make. 
Since this particular case is a 3-triangle projection, the call to 
generate the last vertex creates a degenerate triangle. 

3.5 Computing Thick Vertex Properties 
At this point the vertex program has determined the 

projection and mapped the tetrahedron onto the basis graph to 
form proper triangles.  The only remaining task is to compute the 
properties of the thick vertex.  As discussed in Section 3.1, the 
logic behind the thick vertex calculations may be unintuitive 
algorithmically, but code reuse dominated our design criteria. 

                                                                 
‡ The thin vertices may be called in any order as long as the 

proper winding is adhered to. 



The first thing we need to do is compute the thickness l of 
the thick vertex. In all cases the coordinates of the intersection 
point I are computed (see Figure 3). The intersection point is 
determined by intersecting the tetrahedral segments as shown in 
Figure 3. We compute the thickness, in all cases, by interpolating 
along these line segments. Class 2 projections are straightforward; 
we compute an interpolated z1 along one segment and compute an 
interpolated z2 along the other segment and take the absolute 
value of the difference. Class 1 projections build upon the Class 2 
result by simply multiplying the result by the ratio of the distance 
from V0 to the middle vertex over the distance from V0 to the 
intersection point (see pseudo code for details).  

For linearly varying cells, the color and extinction coefficient 
calculations are carried out in a similar manner; properties from 
the vertices are interpolated along the line segments to give the 
terms C0, C1 and τ1, τ2. The thick vertex color is then 
approximated to be (C0+C1)/2*.  

The extinction coefficient ττττ is (τ1+τ2)/2. Once we know ττττ and 
the thickness l, we then use the coefficients as lookups into a 2D 
texture map defined as 1 – exp(-τl). This technique gives the 
correct attenuation of light across a linear varying cell as given in 
Stein et al. [11]. 

We have given the equations for linear varying cells but our 
current implementation supports element-centered data only. The 
main challenge is getting the vertex program to fit within 128 
lines (at the time of writing our program is 125 lines without 
linear support). The additional logic to support linear cells is 
straightforward but currently takes more than 128 instructions. 
The existing vertex program treats the cell as having constant 
values for both color C and extinction coefficient ττττ, and uses a 
texture map defined as [1- exp(-u)], where u is ττττl, also defined in 
Stein [11]. 

4 RESULTS  
Performance measurements were made on a Dell 530 with a 

Pentium 4 CPU running at 1.7GHz. The operating system on the 
machine is Linux RedHat version 7.1. The graphics card is an 
nVidia GeForce 4 from VisionTec. Sandia National Laboratories 
has many internal tetrahedral datasets but for comparative 
purposes we ran our performance tests on three commonly used 
PLOT3D datasets; the blunt fin, the liquid oxygen post and the 
delta wing. 
 

Dataset Vertices Tetrahedra 
Blunt Fin 40,960 187,395 
Oxygen Post 109,744 513,375 
Delta Wing 211,680 1,005,675 

Table 2: Information about the three datasets tested  

Dataset Sorting  GPU Total 
Blunt Fin .017 sec .25 sec .28 sec 
Oxygen Post .05 sec .69 sec .75 sec 
Delta Wing .09 sec 1.35 sec 1.45 sec 

Table 3: Timings for the various datasets (GPU time includes 
loading the input registers, running the vertex program and 
conducting a glFinish() before stopping the timer). 
                                                                 

* The precise color calculation of the thick vertex when the 
color varies linearly across the tetrahedron is beyond the scope of 
this paper. Please see Williams and Max [14] for the exact 
formula for color in this case. For our implementation we use an 
approximate formula given by Shirley and Tuckman [9]. 

The cell sorting conducted for these experiments is a 
standard template library sort on the cell centriods, and is not 
guaranteed to be correct. The timing for sorting is simply given 
for completeness. For production use we will use one of the 
advanced visibility sorting algorithms being developed in that 
active research area. The GPU time includes loading the input 
registers for each element, running the vertex program for each 
element and conducting a glFinish() before stopping the timer.  

All cells within the dataset are rendered (we have chosen 
transfer functions that assign some opacity to all of the cells). Our 
tests were run at many different viewpoints and then averaged 
(the difference in timings for any given viewpoint was less than 
5%). Datasets like the Blunt Fin were rendered fast enough for the 
viewpoint to be interactively manipulated (almost 4 frames/sec). 

While the performance is reasonable, we still have room for 
improvement. Currently our vertex program is 125 instructions 
(out of the possible 128). An extremely long vertex program 
slows down the performance. Also most of our work has 
concentrated on the implementation of the PT algorithm within 
the GPU. At the time of writing, we believe that the biggest 
performance drains are the API calls and the data movement 
across the AGP bus. At this point we have not investigated 
optimization techniques for these issues. 

 

 
Figure 6: Image generated from the bluntfin dataset (density). 

 

 
Figure 7: Image generated from the oxygen post dataset (x-
momentum). 

 
 



5 CONCLUSIONS AND FUTURE WORK 
We have presented a method for supporting tetrahedral 

primitives directly on the GPU of the current generation graphics 
cards. Our algorithm requires no preprocessing and requires no 
additional data structures. We believe that techniques like ours 
will become increasingly advantageous as GPU’s become faster 
and more flexible. 

Our work can be extended to provide a hardware accelerated 
three-dimensional primitive within OpenGL (GL_TETRA_EXT). 
The support would involve issues like handling exponential 
textures internally, providing proper API calls, optimizing 
memory to GPU performance, and ensuring enough flexibility in 
the architecture to handle different use cases. The natural 
extension to the tetra primitive is support of tetrahedral strips and 
fans (see King et al. [5] for discussion of such primitives). 

Currently the algorithm only supports cell-centered data 
(constant value across the cell). The major constraint restricting 
support of linear cells is the 128-instruction limit for the GPU 
vertex program. In the near future we will work on optimizing and 
reducing the code to allow for linear cell support.  

We also need to fully analyze the degenerate cases where the 
tetrahedral points are coincident in space. Our present 
implementation uses a linear interpolation function for computing 
the thickness of the cell. The interpolation function can break 
down under certain degenerate circumstances and, in rare cases, 
produce visual artifacts.  

Although the performance is reasonably fast we have clearly 
not tapped the full potential of the approach. As mentioned in the 
results section, we have not concentrated on optimizing API use 
and data movement across the AGP. We believe work in that area 
will greatly improve our performance.  
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COLOR PLATE 
 

 
Figure 6: An example showing the vertex to node mapping 
from a projection instance to the basis graph (shown for a 
case 5 projection). 

 

 
Figure 7: Image generated from the bluntfin dataset (density). 

 

 
Figure 8: Image generated from the oxygen post dataset (x-
momentum). 

 


	INTRODUCTION
	RELATED WORK
	APPROACH
	Coding Constraints
	Basis Graph
	Classification Determination
	Isomorphic Mapping
	Computing Thick Vertex Properties

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS

